If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28x^2=36x
We move all terms to the left:
28x^2-(36x)=0
a = 28; b = -36; c = 0;
Δ = b2-4ac
Δ = -362-4·28·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-36)-36}{2*28}=\frac{0}{56} =0 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-36)+36}{2*28}=\frac{72}{56} =1+2/7 $
| 9^5x+3=45 | | 2/3(d)-9=-1 | | x-48=12^9 | | 10=18+2x | | x2+8x+-1=0 | | t÷6-4=9 | | 36+1=7x | | -0.03x^2+1.2x=3 | | (2x-3)+45=135 | | 4y-20-16=3y-24+3y | | x+0.6x=70 | | x+94=149 | | x+55=149 | | 19=6x-23 | | -9y-30=51 | | 1x-149=55 | | 52=5x-13 | | 1/9c=108 | | 49=2x-9 | | 1x+149=55 | | -5x+7=-4x+4 | | 2^(2x+1)=24 | | -6c-14=28 | | 14x-8=12x | | 7d+13=33+3d | | 10x+14=57 | | 3x+5(3x)=10 | | x-45+32=123 | | 113+x+28=180 | | 38+x+38=180 | | 24+x+90=180 | | 30-4x=-9x-95 |